Single Crystal Structural Investigations on Ni_yMo₆Se_{8-x}S_x Solid Solution: A New Location of Nickel Counterions

S. Belin,¹ R. Chevrel,² and M. Sergent

Laboratoire de Chimie du Solide et Inorganique Moléculaire (LCSIM), UMR CNRS 6511, Campus de Beaulieu, Université de Rennes1, 35042 Rennes Cedex, France

Received May 16, 2000; in revised form September 5, 2000; accepted September 6, 2000

DEDICATED TO PROFESSOR J. M. HONIG

The structures of nickel sulfoselenide Chevrel phases have been determined. All the richest nickel phases crystallize in rhombohedral symmetry. A single-crystal structural study makes it possible to identify the special nickel cation locations inside the host network for both pure sulfide and selenide Chevrel phases. We also show that these nickel atoms can form some kind of cluster in the cavities of the host or Ni-Mo bondings. © 2000 Academic Press

Key Words: Chevrel phases; chalcogen solid solution; crystal structural determination; Ni–Ni and Ni–Mo bondings.

I. INTRODUCTION

The ternary molybdenum chalcogenides $M_y Mo_6 X_8$ (M = metal ion and X = S, Se, or Te), the so-called Chevrel phases, have been extensively studied for their unusual properties, such as superconductivity and magnetic and thermoelectric behavior (1-3), because of their interesting structure.

The Chevrel phases structure is based on pseudo-molecular quasi-rigid Mo_6X_8 units, with three-dimensional secant channels between units where are located in vacant sites that can accommodate M^{n+} cations. The nature and number of cations control the symmetry of these phases.

This family of compounds contains complete solid solutions when sulfur atoms substitute to selenium atoms. The first solid solution studied was $Pb_yMo_6Se_{8-x}S_x$ (4) in 1975. Chevrel *et al.*, showed the correlations between T_c (superconducting critical temperature) and structural parameters such as the rhombohedral angle α_R . Later, Tarascon reported several series $M_yMo_6Se_{8-x}S_x$ (M = Cu, Ag, Pb, Yb, Eu, Sr, La) and was interested in chalcogen ordering in the host network according to cation content (5).

We focused our interest on $Ni_{v}Mo_{6}Se_{8-x}S_{x}$, nickel chalcogenide solid solutions, because Chevrel phase series containing small cations, have been much less studied, but they have recently exhibited interesting physical properties (3). $Ni_{v}Mo_{6}Se_{8-x}S_{x}$ presents some unexplained differences with other Chevrel phases containing small cations. For instance, the whole $Cu_y Mo_6 Se_{8-x}S_x$ ($0 \le y \le 4$ and $x \le 8$) solid solution crystallizes in the rhombohedral-hexagonal system at room temperature (6, 7), while $Ni_{v}Mo_{6}Se_{8-x}S_{x}$ is more complex. Indeed in this solid solution, nickel Chevrel selenides can crystallize at room temperature in rhombohedral or triclinic structure according to the y amount of nickel element (8). On the one hand, the only known structure in the system Ni-Mo-Se was one of Ni_{0.66}Mo₆Se₈ with triclinic symmetry (9), equivalent to triclinic nickel telluride compound $Ni_{0.85}Mo_6Se_8$ (10). The nickel y solid solution in NivMo₆Se₈ exhibited compounds with rhombohedral symmetry at higher y Ni content (8). On the other hand, the pure nickel molybdenum sulfides NivMo6S8 crystallize in rhombohedral symmetry with the structure like to $Cu_v Mo_6(S, Se)_8$ (6, 7). Pure nickel molybdenum sulfide and selenide present very large differences in the location of the nickel cations. So we expected to explain such differences in sulfoselenide Chevrel phases with small cations by studying accurately the crystallographic structure of this chalcogen solid solution.

We expected also to increase our knowledge of the symmetry of the Chevrel phases in relation to inserted cations.

The atomic positions determination is also important for band structure calculations (3). We report the synthesis and powdered X-ray diffraction results of $Ni_{1.2}Mo_6Se_{8-x}S_x$ compounds. We also investigate the richest nickel solid solution to follow the location of the Ni atoms in the chalcogen network by single crystal structural investigations.

II. EXPERIMENTAL

Phases of composition $Ni_{1,2}Mo_6Se_{8-x}S_x$ (with a step x of 0.5) were prepared by reaction of stoichiometric mixtures of

¹Current address: Laboratoire pour l'Utilisation du Rayonnement Synchrotron (LURE), Université Paris-Sud, 91405 Orsay, France.

²To whom correspondence should be addressed. Tel.: 00 33 2 99 28 62 51; Fax: 00 33 2 99 63 57 04; E-mail:chevrel@univ-rennes1.fr.

Single crystals were made in the same way, but the y amount of nickel was fixed to 2, so the extra nickel with chalcogen atoms can act as transport agent and the y amount of nickel be maximum (y_{max}) . The time of crystallization was extended for one week more and the compounds were slowly cooled according to the inertia of the furnace.

III. RESULTS AND DISCUSSION

III.1. $Ni_{1,2}Mo_6Se_{8-x}S_x$ Series

The X-ray data of the pseudo-ternary chalcogen system $Ni_{1.2}Mo_6Se_{8-x}S_x$ indicate that the samples have rhombohedral symmetry ($R\overline{3}$) over the whole range of composition $0 \le x < 8$. Note that $Ni_{1.2}Mo_6S_8$ is a metastable compound only obtained by low-temperature diffusion of Ni element in α -Mo₆S₈ host compound (11).

Figures 1 and 2 show respectively the hexagonal unit-cell parameters $a_{\rm H}$ and $c_{\rm H}$ and the hexagonal volume $V_{\rm H}$ versus x, the sulfur amount. The $a_{\rm H}$ and $c_{\rm H}$ parameters decrease quasi-monotonically as x increases, and the hexagonal volume shows a slightly negative deviation from Vegard's law.

On Fig. 3, we consider the variation of the ratio $c_{\rm H}/a_{\rm H}$ or the rhombohedral angle $\alpha_{\rm R}$ as function of x. Near the value x = 3.5-4, the curves present an inflexion point. We observe a "quasi-plateau" around these values.

FIG. 1. Variation of $a_{\rm H}$ and $c_{\rm H}$ hexagonal unit-cell parameters as function of x sulfur content in Ni_{1.2}Mo₆Se_{8-x}S_x.

FIG. 2. Hexagonal unit-cell volume of $Ni_{1,2}Mo_6Se_{8-x}S_x$ crystalline powders.

Two assumptions can explain such a feature: a modification of chalcogen disorder or a change of sites filled by the Nickel cations.

III.2. $Ni_v Mo_6 Se_{8-x} S_x(y \sim 2)$ Single Crystals

The crystal growth has been carried out as it is described previously. We have investigated five single crystals with

FIG. 3. Variation of the $c_{\rm H}/a_{\rm H}$ hexagonal unit-cell parameters ratio and the rhombohedral angle $\alpha_{\rm R}$ versus the sulfur content x of Ni_{1.2}Mo₆Se_{8-x}S_x solid solution.

	I Crystal	Data	
Formula: N N N N N N	$\begin{array}{l} i_{1.25}Mo_6Se_8,\\ i_{1.28}Mo_6Se_{5.72}S_{2.28},\\ i_{1.82}Mo_6Se_{4.11}S_{3.89}\\ i_{1.85}Mo_6Se_{3.46}S_{4.54}\\ i_{1.99}Mo_6Se_{2.17}S_{5.83} \end{array}$	M : 1280.71 g/mol M : 1218 g/mol M : 1314 g/mol M : 1103 g/mol M : 1050.75 g/mol	
Crystal system: Parameters: Unit cell refined from 25 reflections (9°	$ \begin{array}{l} \mbox{rhombohedral} \\ a_{\rm R} = 6.7316 \; (9) \; {\rm \mathring{A}} \\ a_{\rm R} = 6.6313 \; (3) \; {\rm \mathring{A}} \\ a_{\rm R} = 6.5790 \; (3) \; {\rm \mathring{A}} \\ a_{\rm R} = 6.5628 \; (3) \; {\rm \mathring{A}} \\ a_{\rm R} = 6.5079 \; (6) \; {\rm \mathring{A}} \\ a_{\rm H} = 9.670 \; (2) \; {\rm \mathring{A}} \\ a_{\rm H} = 9.629 \; (1) \; {\rm \mathring{A}} \\ a_{\rm H} = 9.613 \; (1) \; {\rm \mathring{A}} \\ a_{\rm H} = 9.604 \; (1) \; {\rm \mathring{A}} \\ a_{\rm H} = 9.547 \; (1) \; {\rm \mathring{A}} \\ \end{array} $	space group: $\alpha_r = 91.183^{\circ} (2)$ $\alpha_r = 93.106^{\circ} (6)$ $\alpha_r = 93.875^{\circ} (7)$ $\alpha_r = 94.055^{\circ} (5)$ $\alpha_r = 94.37^{\circ} (1)$ $c_H = 11.282 (5) \text{ Å}$ $c_H = 10.845 (8) \text{ Å}$ $c_H = 10.597 (1) \text{ Å}$ $c_H = 10.533 (1) \text{ Å}$ $c_H = 10.378 (1) \text{ Å}$	$\begin{array}{l} R-3 \ (\text{No. } 148) \\ V_r = 304.60 \ (2) \ \text{\AA}^3 \\ V_r = 290.27 \ (5) \ \text{\AA}^3 \\ V_r = 282.71 \ (5) \ \text{\AA}^3 \\ V_r = 280.43 \ (4) \ \text{\AA}^3 \\ V_r = 273.09 \ (9) \ \text{\AA}^3 \\ V_H = 913.7 \ (4) \ \text{\AA}^3 \\ V_H = 870.8 \ (1) \ \text{\AA}^3 \\ V_H = 848.1 \ (1) \ \text{\AA}^3 \\ V_H = 841.3 \ (1) \ \text{\AA}^3 \\ V_H = 819.3 \ (1) \ \text{\AA}^3 \\ Z : 1 \end{array}$
$\rho_{cal} = 7.22, 6.97, 7.72, 6.53, 6.39 \text{ g/cm}^3$ Crystal size: Linear absorption factor: 32.5, 34.11, 35	02, 35.31, 17.56 mm ⁻¹		$\begin{array}{c} 0.093 \times 0.093 \times 0.07 \ mm^3 \\ 0.14 \times 0.08 \times 0.07 \ mm^3 \\ 0.12 \times 0.12 \times 0.12 \ mm^3 \\ 0.16 \times 0.09 \times 0.07 \ mm^3 \\ 0.046 \times 0.058 \times 0.07 \ mm^3 \end{array}$
	II. Data Co	ollections	
Temperature: 295 K Diffractometer : Enraf–Nonius CAD-4 Monochromator : graphite			Wavelength: MoK_{α} radiation Scan mode: $\omega - 2\theta$ Scan width: $1.20 + 0.35$ tg θ
0 < h < 10; 0 < k < 10; -10 < l < 10 Number of measured reflections 1021, 9 Number of independent reflections (with	89, 914, 719, 929 1 <i>I</i> > σ (<i>I</i>)): 788, 737, 795, 765, 815		θ_{\max} : 35
	III. Structure D	etermination	
Lorentz and polarization corrections Absorption Correction: DIFABS, PSISC Refinement on <i>F</i> Refined parameters: 33, 45, 45, 45, 45 Number of independent reflections with Unweighted agreement factor $R = 0.032$ Weighted agreement factor $R_{\omega} = 0.050$, Validity of refinement $S = 1.127$, 1.026, Ponderation factor <i>P</i> : 0.07, 0.05, 0.05, 0. $\Delta \rho$ max: 2.11, 1.56, 2.16, 1.92, $1.07e^{-1}$ Å $\Delta \rho$ min: -0.868 , -0.549 , -0.976 , -0 (Δ /σ) _{max} < 0.03, 0.02, 0.02, 0.01, 0.01 Secondary Extinction coefficient: 6.788 × Atomic scattering factors from <i>Internati</i>	CAN, SAC, PSISCAN, PSISCAN $I > 3\sigma (I) = 726, 672, 765, 719, 651$, 0.029, 0.036, 0.029, 0.023 0.036, 0.054, 0.044, 0.029 1.699, 1.07, 1.515 07, 0.04 $\omega = 4F_o^2/[\sigma^2 (F_o^2) + (PF_o^2)^2]$ 0.522, $-0.477e^- \text{Å}^3$ $10^{-7}, 1.87 \times 10^{-7}, 2.312 \times 10^{-6}, 2.55$ onal Tables of X-Ray Crystallograph	 5 × 10 ^{−6} , 1.706 × 10 ^{−6} y RX	

 TABLE 1

 Crystal Data and Experimental Parameters for the Intensity Data Collection of Ni_{1.25}Mo₆Se₈, Ni_{1.28}Mo₆Se_{5.72}S_{2.28}, Ni_{1.82}Mo₆Se_{4.11}Se_{3.89}, Ni_{1.85}Mo₆Se_{3.46}S_{4.54}, Ni_{1.99}Mo₆Se_{2.17}S_{5.83}

four different nominal stoichiometry: $Ni_yMo_6Se_8$, $Ni_yMoSe_6S_2$, $Ni_yMo_6Se_4S_4$, and $Ni_yMo_6Se_2S_6$.

X-ray diffraction intensities were collected on a Nonius CAD-4 four circle diffractometer with the experimental con-

ditions given in Table 1. All the single crystals have the space group ($R\overline{3}$). All calculations were performed using the MOLEN program system (12). The results from the crystal-line determinations are summarized in Tables 2 and 3.

 TABLE 2

 Positional Occupancy Factors and Thermal Parameters of Ni₂

 Mo_6S_8 , Ni_{1.99} $Mo_6Se_{2.17}S_{5.83}$, Ni_{1.85} $Mo_6Se_{3.46}S_{4.54}$, Ni_{1.82} $Mo_6Se_{4.11}$
 $S_{3.89}$, Ni_{1.28} $Mo_6Se_{5.72}S_{2.28}$, and Ni_{1.25} Mo_6Se_8 ($B_{eq} = 4/3 \sum a_i \cdot a_j B_{ij}$)

Atom	Site	х	У	Ζ	$B({\rm \AA}^2)$	
Ni ₂ Mo ₄ Se (14)						
Мо	6f	0.21743 (6)	0.40455 (6)	0.54305 (4)	0.58 (1)	
S(1)	6f	0.3781 (2)	0.1330 (2)	0.7269 (2)	0.83 (1)	
S(2)	2c	0.1999 (2)	0.1999 (2)	0.1999 (2)	0.81 (1)	
Ni(1)	6f	0.0558 (11)	0.0791 (11)	0.8192 (10)	1.89 (8)	
$\tau = 0.166$ (2)						
Ni(2)	6f	0.0144 (9)	0.3458 (9)	0.9404 (9)	1.45 (7)	
$\tau = 0.166(2)$						
		Ni1.99M065	$Se_{2.17}S_{5.83}$			
Mo	6f	0.21889 (4)	0.40569 (4)	0.54448 (4)	0.552 (4)	
X(1)	6f	0.3768 (1)	0.1309 (1)	0.7303 (1)	0.91 (1)	
0.20 Se/0.80S						
X(2)	2c	0.19420 (8)	0.19420 (8)	0.19420 (8)	1.067 (3)	
0.49 Se/0.51S						
Ni(1)	6f	0.0588 (6)	0.0718 (7)	0.7920 (7)	2.48 (7)	
$\tau = 0.152(2)$						
Ni(2)	6f	0.0048 (4)	0.3470 (5)	0.9366 (4)	1.31 (5)	
$\tau = 0.179(2)$						
		Ni _{1.85} Mo ₆ S	$Se_{3,46}S_{4,54}$			
Mo	6f	0.22096 (5)	0.40749 (5)	0.54468 (5)	0.873 (4)	
X(1)	61	0.3749 (1)	0.1289 (1)	0.7346 (1)	1.167 (9)	
0.32 Se/0.68S	•	0.10(07.(0)	0.10(70.0)	0.10(50.0)	1 275 (2)	
X(2)	2c	0.19697 (8)	0.19679 (8)	0.19679 (8)	1.275 (3)	
0.77 Se/0.23S	66	0.0(20.(10)	0.0750 (10)	0.5050 (10)	2.0 (1)	
N1(1)	61	0.0620 (10)	0.0750 (10)	0.7870 (10)	3.0 (1)	
$\tau = 0.105 (2)$	c.f	0.0004 (5)	0.2470 (6)	0.0268 (5)	2 10 (6)	
r = 0.203(2)	01	-0.0004 (3)	0.3470 (0)	0.9308 (3)	2.10 (0)	
t = 0.205 (2)		NiMo.	Se S			
Mo	6f	0.22173(5)	0.40819(5)	0 54477 (5)	0.440(5)	
X(1)	6f	0.3749 (1)	0.1283(1)	0.7360(1)	0.709 (9)	
0.405 Se/0.595S	01	010719(1)	011200 (1)	01/2000(1)	0.705 (5)	
X(2)	2c	0.19825 (8)	0.19825 (8)	0.19825 (8)	0.877 (3)	
0.84 Se/0.16S						
Ni(1)	6f	0.061 (1)	0.075 (2)	0.787 (2)	3.6 (2)	
$\tau = 0.098$ (3)					()	
Ni(2)	6f	0.0016 (6)	0.3468 (7)	0.9363 (7)	1.87 (7)	
$\tau = 0.205$ (2)						
		Ni1.28M065	$Se_{5.72}S_{2.28}$			
Мо	6f	0.22420 (5)	0.41165 (5)	0.54586 (5)	0.703 (5)	
Se(1)	6f	0.37547 (9)	0.12661 (8)	0.73992 (9)	0.944 (8)	
0.65 Se/0.35S						
Se(2)	2c	0.20498 (8)	0.20498 (8)	0.20498 (8)	1.073 (7)	
0.91 Se/0.09S						
Ni(2)	6f	-0.0013 (9)	0.3440 (10)	0.9359 (8)	3.2 (1)	
$\tau = 0.168$ (3)						
Ni(2')	6f	0.508 (2)	0.956 (2)	0.846 (2)	0.6 (2)	
$\tau = 0.045$ (2)						
		Ni _{1.25} N	Io ₆ Se ₈			
Mo	6f	0.22924 (7)	0.41922 (7)	0.54805 (7)	0.468 (7)	
Se(1)	6f	0.37670 (9)	0.12382 (9)	0.74339 (9)	0.763 (9)	
Se(2)	2c	0.21714 (9)	0.21714 (9)	0.21714 (9)	0.833 (4)	
N1(2')	61	0.5000 (6)	0.9436 (5)	0.8406 (5)	0.67 (5)	
$\tau = 0.208$ (2)						

The chalcogen positions (Table 2) were first assumed to contain only Se (or S if in the majority) with fractional occupancy; then the positional and thermal parameters were fixed to the refined values, and the occupancies of the chalcogen positions by Se and S were refined, constrained to full occupancy of the eight available positions. Then Ni occupancy rates were refined. These occupancy rates, of course, vary with the chalcogen ratio.

We represent in Fig. 4 the evolution of the y_{max} cation content in each compound as a function of the x sulfur content. The pure selenide compound can only accept 1.25 Ni per unit cell against 2 in the pure sulfide one.

This curve exhibits a jump near x = 4.

For $x \leq 3$, the Ni_yMo₆Se_{8-x}S_x pseudoternary seems to accept only 1.30 nickel cation and for $x \geq 4$ it is possible to insert between 1.80 and 2 nickel cations per Mo₆X₈ unit. This property was often noted that the selenium Chevrel phases contain less small cations content than the sulfur ones because of covalency of Se atoms.

The Chevrel phases structure which consists of a stacking of Mo_6X_8 quasi-cubic building blocks is represented on Fig. 5. This stacking leaves three types of cavity in the chalcogen lattice. The cavity 1 (the largest one) is a quasicubic shaped cavity located at the origin of the rhombohedral unit-cell with point symmetry $\overline{3}$; it is formed by eight chalcogen atoms belonging to eight different Mo_6X_8 units. The cavity 2, situated at the middle of the rhombohedral axes ($\overline{1}$ point symmetry), has more irregular cubic shape (X_8) and is formed by eight chalcogen atoms belonging to four different Mo_6X_8 units. This cavity 2 shares opposite pseudo-squared faces with two other cavities 1 along the rhombohedral axes. Cavity 3, formed by eight chalcogen atoms belonging to two different Mo_6X_8 units, is always empty because of the Mo-Mo intercluster bond going through.

We have followed the evolution of the location of the nickel cations in the whole solid solution, thanks to the refined cation position. The Ortep representations of occupancy of cavities 1 and 2 by nickel cations are shown on Fig. 6 (13). The occupancy rate of the sites (labeled 1 in cavity 1 and 2 or 2' in cavity 2 of the Chevrel phases' structure) as a function of x, sulfur content, has been schematized in Fig. 7.

The Ni₂Mo₆S₈ structure (14) has been chosen as a reference to define the cavities and the positions where the atomic coordinates of nickel cations are located. We differentiate two types of positions in cavity 2 because of the atomic coordinates found for Ni_{1.28}Mo₆Se_{5.72}S_{2.28} (see Tables 2 and 3). One type of positions in cavity 2 is very similar to the type met in the structure of Ni₂Mo₆S₈ (14). So we named them Ni(2). The other type of positions are nearly those found in the Ni_{0.66}Mo₆Se₈ (9) triclinic selenide compound, so they are called (Ni(2')).

This new occupation of channels of $Ni_{1.28}Mo_6Se_{5.72}S_{2.28}$ by nickel ions is quite original and allows us to well understand the differences in site occupancy between the pure sulfide and the pure selenide.

So we are able to follow the evolution of the location of the nickel cations in the whole solid solution in the 254

TABLE 3 Principal Distances (Å) and Angles (°) of Ni_{1.25}Mo₆Se₈, Ni_{1.28}Mo₆Se_{5.72}S_{2.28}, Ni_{1.82}Mo₆Se_{4.11}S_{3.89}, Ni_{1.85}Mo₆Se_{3.46}S_{4.54}, Ni_{1.99}Mo₆Se_{2.17}S_{5.83}, and Ni₂Mo₆S₈

Distances (Å)	$Ni_{1.25}Mo_6X_8 X_8 = Se_8$	Ni _{1.28} Mo ₆ X_8 $X_8 = Se_{5.72}S_{2.28}$	Distances (Å)	$Ni_{1.82}Mo_6X_8$ $X_8 = Se_{4.11}S_{3.89}$	Ni _{1.85} Mo ₆ X_8 $X_8 = Se_{3.46}S_{4.54}$	Ni _{1.99} Mo ₆ X_8 $X_8 = Se_{2.17}S_{5.83}$	Ni ₂ Mo ₆ S ₈ (14)
Mo_6X_8 cluster unit			Mo_6X_8 cluster unit				
Intratriangle	2.686	2.694	Intratriangle				
$(Mo-Mo)\Delta$			$(Mo-Mo)\Delta$	2.700	2.703	2.702	2.691
Intertriangle	2.760	2.778	Intertriangle				
ΜοΔ-ΜοΔ			ΜοΔ-ΜοΔ	2.777	2.775	2.770	2,765
Intercluster Mo-Mo	3 355	3 293	Intercluster Mo-Mo	3 265	3 254	3 217	3 185
$M_{0}-X(2)$	2 571	2 573	$M_{0}-X(2)$	2 574	2 573	2 559	2 477
V(1)	2.571	2.575	V(1)	2.374	2.575	2.337	2.4/7
X(1) Y(1)	2.302	2.518	X(1) Y(1)	2.440	2.470	2.437	2.400
X(1)	2.008	2.562	X(1)	2.520	2.514	2.477	2.451
X(1)	2.623	2.603	X(1)	2.587	2.577	2.534	2.496
Intercluster $Mo-X(1)$	2.655	2.575	Intercluster $Mo-X(1)$	2.534	2.522	2.484	2.460
X(2) - X(1)	3.747	3.746	X(2) - X(1)	3.717	3.706	3.663	3.577
X(1) - X(1)	3.576	3.507	X(1) - X(1)	3.468	3.454	3.400	3.353
X_8 origin (org) cubic site			X_8 origin cubic site				
X(2) - X(1)	3.443	3.366	X(2) - X(1)	3.342	3.329	3.336	3.360
X(1) - X(1)	3.587	3.546	X(1) - X(1)	3.528	3.525	3.524	3.523
$\operatorname{org}(1) - X(2)$	2.450	2.223	$\operatorname{org}(1) - X(2)$	2.101	2.073	2.015	2.047
org(1) - X(1)	3,216	3 205	org(1) - X(1)	3 2 1 0	3 213	3 2 2 3	3 229
X(1) - X(2) - X(1) angle(°)	101.70	105.03	X(1)-X(2)-X(1) angle(°)	106.75	107.13	107.98	107.32
Site $2'/2000$ Site $2'/2000$	101.70	105.05	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	100.75	107.15	107.90	107.52
NE(2) NE(2)	2 252	2 100	Sile I/Cavity I	1 (55	1 (52	1 (01	1 402
INI(2) - INI(2)	2.233	2.106	INI(1) - INI(1)	1.033	1.033	1.001	1.403
				2.706	2.706	2.613	2.370
Ni(2')-X(2)	2.258	2.263		3.172	3.171	3.064	2.755
X(1)	2.188	2.115	Ni(1) - X(2)	2.405	2.385	2.308	2.335
X(1)	2.243	2.171	X(1)	2.110	2.116	2.149	2.220
X(1)	2.517	2.574	X(1)	2.121	2.117	2.155	2.220
Ni(2') - Ni(2)	_	1.309	X(1)	2.841	2.817	2.736	2.592
Site 2/cavity 2			Site 2/cavity 2				
Ni(2) - Ni(2)	_	2 196	Ni(2) - Ni(2)	2 1 3 2	2 1 1 9	2 104	2 105
$141(2)^{-141}(2)$		2.919	$141(2)^{-141}(2)$	2.923	2.909	2.896	2.103
$\mathbf{N}_{\mathbf{i}}(2) = \mathbf{V}(2)$		2 4 4 0	\mathbf{N} : (2) \mathbf{V} (2)	2 296	2 280	2 2 2 2	2 202
NI(2) - A(2)		2.440	NI(2) - A(2)	2.500	2.380	2.555	2.292
X(1)		2.199	X(1)	2.184	2.172	2.167	2.194
X(1)	—	2.214	X(1)	2.234	2.230	2.278	2.330
X(1)		2.541	X(1)	2.508	2.515	2.481	2.446
			Ni(1)-Ni(2)	0.984	0.973	1.002	1.187
				2.059	2.060	2.026	1.879
				2.529	2.515	2.500	
			Ni(1)-Mo	2.975	2,965	2.974	3 040
$N_{i}(2) - M_{O}$		3 000		2.973	2.903	2.974	2 078
141(2)=1410		2,000		2.975	2.949	2.940	2.978
		3.099		3.070	3.079	3.034	3.014
		3.422		3.301	3.285	3.198	3.090
Ni(2')-Mo	2.481	2.460					
	2.848	2.811					
	2.904	2.888					
				1.500	4 505	4 500	4.050
			Org(1)-Ni(1)	1.586	1.585	1.532	1.378
			Org(2)-Ni(1)	1.926	1.917	1.924	
				3.109	3.100	3.068	
Org(2)-Ni(2)		1.098	Org(2)-Ni(2)	1.066	1.059	1.052	1.052
Org(1)-Ni(2)	_	2.342	Org(1)-Ni(2)	2.347	2.344	2.325	2.300
	1 1 2 7	1.053					
Org(2) - INI(2')	1.127	1.053					
Org(1)-Ni(2')	3.505	3.357					
Org(2) Ma	2 175	2 0 2 0	Org(2) Mo	2.055	2.026	2004	
01g(2)-1010	5.1/5	5.029	01g(2)-1010	2.933	2.930	2.000	
	3.490	5.400			5.447		

FIG. 4. Evolution of the nickel maximum content y_{max} versus the x sulfur content of Ni_yMo₆Se_{8-x}S_x.

chalcogen network while sulfur atoms substitute for selenium atoms.

In Ni_{1.25}Mo₆Se₈, the nickel ions are only in one six-fold position in cavity 2 (site 2': Ni(2') cations). The occupancy is τ (Ni(2')) = 0.208 and the nickel ions are in a tetrahedral coordination of selenium atoms (distances Ni(2')–Se(2), 2.258 Å, and Ni(2')–Se(1), 2.188, 2.243, and 2.517 Å).

In $Ni_{1.28}Mo_6Se_{5.73}S_{2.27}$, the nickel ions can occupy two six-fold positions in the same cavity 2. The Ni(2') ions (site 2') are in tetrahedral sites of chalcogen atoms as the nickel atoms in the previous structure. The occupancy of this site 2' decreases ($\tau = 0.045$) with respect to one of the pure selenide. The Ni(2) ions occupy the site 2 so in the cavity 2 (occupancy of 0.168) and are in tetrahedral environment of chalcogen atoms, this tetrahedron sharing one face with the precedent tetrahedron. But it looks evident that these tetrahedra are not filled in the same cell, because the distance Ni(2')-Ni(2) = 1.309 Å is really too short. The distances Ni(2)–Ni(2), 2.199 Å, and Ni(2')–Ni(2'), 2.106 Å (via $\overline{1}$), are also very short to have metal-metal bondings. The drawing of Fig. 6 allows one to understand why the equivalent thermal parameter of Ni(2') is smaller than that of Ni(2): it is because the Ni(2') site is much smaller than the Ni(2) site (see the Ni-Se distances).

Thus, the following structure of nickel molybdenum sulfoselenides is very close to the $Ni_2Mo_6S_8$ structure. The nickel ions occupy equivalent positions in the cavity 2 (Ni(2) atoms) and in the cavity 1 (Ni(1) atoms) for the three new structures; only the occupancy factors change, being

$\tau(Ni(2)) = 0.205(2)$	$\tau(Ni(1)) = 0.098(3)$
$\tau(Ni(2)) = 0.203(2)$	$\tau(Ni(1)) = 0.105(2)$

$$\begin{aligned} \tau(\text{Ni}(2)) &= 0.179(2) & \tau(\text{Ni}(1)) = 0.152(2) \\ \tau(\text{Ni}(2)) &= 1/6 \ (0.167) & \tau(\text{Ni}(1)) = 1/6 \ (0.167) \end{aligned}$$

in $Ni_{1.82}Mo_6Se_{4.11}S_{3.89}$, $Ni_{1.85}Mo_6Se_{3.46}S_{4.54}$, $Ni_{1.99}Mo_6Se_{2.17}S_{5.83}$, and $Ni_2Mo_6S_8$, respectively.

The schema of occupancy evolution (Fig. 7) shows that site 2' empties quickly while site 2 fills when sulfur atoms start to substitute for selenium atoms in these phases. Note that we have not checked if a compound can exist containing Ni cations in the three sites at the same time for $x \sim 3$. The possibility of nickel cations occupying very roughly

Chevrel-Phases Host Network

FIG. 5. Projection of the host network $Mo_6Se_{8-x}S_x$ on hexagonal plane of $Ni_yMo_6Se_{8-x}S_x$ compounds. View of the chalcogen channels with the three types of cavities.

FIG. 6. Location of the nickel ions in cavities 1 and 2 of the host network of the different $Ni_yMo_6Se_{8-x}S_x$ single crystals along the x chalcogen solid solution.

site 1 instead of the site 2' ($x \sim 3-4$) can probably explain the jump of y_{max} exhibited in Fig. 4, the sulfoselenide compound can now accept much more Ni cations in the host network.

Near x = 2.5-3, site 1 begins to be occupied and only for Ni₂Mo₆S₈, the occupancies of sites 1 and 2 are equal (14). In view of all these results, we conclude that the jump found in

FIG. 7. Nickel occupancy factors in the three different sites of the $Ni_yMo_6Se_{8-x}S_x$ solid solution.

the representation of the α_R parameter as a function of x for Ni_{1.2}Mo₆Se_{8-x}S_x or of y_{max} versus x in Ni_{ymax} Mo₆Se_{8-x}S_x single crystals is due to massive occupancy of site 1.

These structural investigations give also precious information on the chalcogen arrangement. The refined chalcogen occupancies are reported in Table 2. There is no real ordering S/Se in the solid solution, but the disorder is not perfect; actually the selenium atoms occupy the special 2c position preferentially.

Tarascon and co-workers predicted no ordering for the mixed Chevrel phases, except for $LaMo_6Se_{8-x}S_x$ (5), but their considerations were only based on the variation of $c_{\rm H}/a_{\rm H}$ determined from X-ray powder diagrams versus the chalcogen ratio. Our conclusions are a little bit different, since it is clear that selenium atoms take one preferential place in special 2c positions for Chevrel phases with small cations, and in general 6f positions with large cations, whatever the chalcogen ratio.

The copper mixed solid solution seems to exhibit the same feature if we consider the two single structure determinations for $Cu_{2.6}Mo_6Se_{6.5}S_{1.5}$ and $Cu_{2.6}Mo_6Se_{3.4}S_{4.6}$ reported by McKinnon and co-workers (6, 7). But there is a main difference between the nickel and copper solid solutions: for the 6Se/2S composition, the copper cations are actually statistically localized in cavity 1, site 1 and in

FIG.8. Variation of the Mo_{Δ} - Mo_{Δ} intertriangle distance as function of electronic charge transfer in $M_yMo_6S_8$, $M_yMo_6Se_8$, and $Ni_yMo_6Se_{8-x}S_x$ compounds from model of Yvon (16).

cavity 2, site 2 (τ (Cu(2)) ~ τ (Cu(1)) ~ 0.21) and we have seen for the corresponding nickel compound that nickel cations occupy two different sets of positions only in cavity 2 (Ni(2) and Ni(2')) with different occupancies (τ (Ni(2)) = 0.170; τ (Ni(2')) = 0.045).

In $Cu_{y_{max}}Mo_6Se_{8-x}S_x$, copper cation occupies statistically site 1 and site 2, even at x = 8 or x = 0 (6, 7) while in $Ni_{y_{max}}Mo_6Se_{8-x}S_x$, the occupancy of each site (sites 1, 2, 2') depends on the Se/S ratio (Fig. 7).

So the nickel mixed Chevrel phases exhibit an interesting feature in the location of these cations in the chalcogen network, allowing the transition between the pure sulfide and selenide nickel Chevrel phases to be well understood.

In the $M_y^{n+}Mo_6X_8$ Chevrel phases, a charge transfer of $(n.y)e^-/Mo_6$ occurs through Mo_6 cluster and $Mo_{\Delta}-Mo_{\Delta}$ intertriangle distances of the cluster (16). Yvon has reported for a large number of Chevrel phases the variation of the $Mo_{\Delta}-Mo_{\Delta}$ intertriangle distances versus charge transfer and established the model of Fig. 8.

We report our data from Ni_yMo₆Se_{8-x}S_x. For these compounds, the electronic charge transfer from nickel atoms through the Mo₆ cluster seems to be quasi-constant, because there is no significant change in Mo_Δ-Mo_Δ distances, even if the nickel amount rises in richer sulfur compounds. The mean distance is around 2.77 Å, which indicates a charge transfer model with between 1 and $1.4e^{-}$ /Mo according to the nature of chalcogen (Table 4). We deduced from this model the formal oxidation state of nickel cations; it is between 0.60 and 0.90. It is not a common oxidation state for nickel cation in solid state chemistry, which leads us to conclude that electrons exist near nickel cations.

 TABLE 4

 Charge Transfer and Oxidation State of Nickel Cation for

 Ni_vMo₆Se_{8-x}S_x from Model of Yvon (16)

Compounds	Charge transfer $(ny)e^{-}/Mo_{6}$	Charge of cation n^+
Ni _{1.25} Mo ₆ Se ₈	1.1	0.88
Ni _{1.25} Mo ₆ Se _{5.72} S _{2.28}	1	0.78
Ni _{1.82} Mo ₆ Se _{4.11} S _{3.89}	1.15	0.63
Ni _{1.85} Mo ₆ Se _{3.46} S _{4.54}	1.2	0.65
Ni1.99Mo6Se2.17S5.83	1.3	0.65
Ni ₂ Mo ₆ Se ₈	1.4	0.7

We suspect that Ni-Ni bondings shape cationic clusters $(Ni_2)^{2+}, (Ni_3)^{2+} \dots$ because magnetic susceptibility measurements made on Ni_{1.82}Mo₆Se_{4.11}S_{3.89} indicated only Pauli paramagnetism (No Curie/Weiss-type magnetism, typical for Ni²⁺ in tetrahedral sites, can be detected.) Moreover, Schöllhorn proposed earlier polynuclear models for $(Zn_2)^{2+}Mo_6S_8^{2-}$, $(Cd_2)^{2+}Mo_6S_8^{2-}$, and $(Li_4)^{3+}Mo_6S_8^{3-}$, and suspected them to be available for Co, Fe, and Ni in Chevrel phases (17, 18). Note that nickel clusters are compatible with the cationic sites geometry. In site 1, the six equivalent positions (6f) form a hexagon and we can easily imagine as occupied one over two positions forming $(Ni_3)^{2+}$ triangular complex. In the same way, in site 2, we can have $(Ni_2)^{2+}$ pairs from a geometric point of view. These assumptions are reinforced by the high mobility of the nickel atoms in nickel molybdenum sulfide (19).

In the pure nickel Chevrel selenide and the mixed close selenide $Ni_{1.28}Mo_6Se_{5.72}S_{2.28}$, the nickel atoms are delocalized in cavity 2 (site 2 and site 2'), interact strongly with the Molybdenum atoms of the Mo_6 octahedral cluster, and can form Ni–Mo bondings (Table 3).

IV. CONCLUSION

We showed that $Ni_{y_{max}}Mo_6Se_{8-x}S_x$ solid solution containing the richest phases in nickel cations crystallizes in rhombohedral symmetry. The nickel amount varies from 1.25Ni/Mo₆ in the case of the selenide compound to 2Ni/Mo₆ in the case of the sulfide.

For substitution of smaller sulfur atoms for selenium ones, the nickel amount increases graduated in these phases where only the cavity 2 is occupied. Thus, the greater increase in the nickel amount is made possible when the rate of substitution is close to 3–4S, because the nickel cations can then fill cavity 1 of the host network.

This study permits us to understand the filling of the cavities of the sulfoselenide host network by nickel cations and to follow the structural evolution from $Ni_2Mo_6S_8$ to $Ni_{1.25}Mo_6Se_8$.

We also show that the nickel cations cannot be in the +2 oxidation state. They can form nickel clusters inside cavities of these phases or form bondings with Mo atoms belonging to the Mo₆ cluster.

REFERENCES

- B. T. Matthias, M. Marezio, E. Corenzwit, A. S. Cooper, and H. F. Barz, *Science* 175, 1465 (1972).
- Ø. Fischer, H. Jones, G. Bongi, M. Sergent, and R. Chevrel, J. Phys. C 7, L450 (1974).
- T. Caillat, J.-P. Fleurial, and G. J. Snyder, *Solid State Sci.* 1(7–8), 535 (1999); C. Roche, P. Pecheur, G. Toussaint, A. Jenny, H. Scherrer, and S. Scherrer, *J. Phys. Condens. Matter* 10, L333 (1998); C. Roche, R. Chevrel, A. Jenny, P. Pecheur, H. Scherrer, and S. Scherrer, *Phys. Rev. B* 60, 16,442 (1999).
- 4. R. Chevrel, M. Sergent, and Ø. Fischer, Mater. Res. Bull. 10, 1169 (1975).
- D. C. Johnson, J. M. Tarascon, and M. J. Sienko, *Inorg. Chem.* 22, 3773 (1983).
- L. S. Selwyn, W. R. McKinnon, J. R. Dahn, and Y. Le Page, *Phys. Rev.* B 33, 6405 (1986).
- L. S. Shenoy, W. R. McKinnon, and Y. Le Page, *Phys. Rev. B* 42, 10,427 (1990).

- M. Sergent and R. Chevrel, C. R. Acad. Sci. 274, 1965 (1972); J. Solid State Chem. 6, 433 (1973).
- 9. O. Bars, J. Guillevic, and D. Grandjean, J. Solid State Chem. 6, 335 (1973).
- 10. W. Honle and K. Yvon, J. Solid State Chem. 70, 235 (1987).
- R. Chevrel and M. Sergent, *in* "Superconductivity in Ternary Compounds, I" (Ø. Fischer and M. B. Maple, Eds.), Topics of Current Physics, Vol. 32, pp. 25-86. Springer-Verlag, Berlin/ Heidelberg, 1982.
- C. K. Fair, "MOLEN. An Interactive Intelligent System for Crystal Structure Analysis." Enraf-Nonius, Delft, 1990.
- C. K. Johnson, "ORTEP II," Report ORNL-5138, Oak Ridge National Laboratory, 1976.
- J. Guillevic, O. Bars, and D. Grandjean, J. Solid State Chem. 7, 158 (1973); Acta Crystallogr. Sec. B 32, 1338 (1976).
- K. Yvon, R. Chevrel, and M. Sergent, Acta Crystallogr. Sect. B 36, 685 (1980).
- K. Yvon, in "Current Topics in Materials Science," (E. Kaldis, Ed.), Vol. 3, 53. North-Holland, Amsterdam, 1979.
- R. Schöllhorn, "Inclusion Compounds," p. 249, Academic Press, London, 1984.
- C. Prigge, W. Müller-Warmuth, E. Gocke, and R. Schöllhorn, Solid State Ionics 62, 143 (1993).
- C. Ritter, C. Nöldeke, W. Press, U. Stege, and R. Schollhorn, Z. Phys. B 92, 437 (1993).